Immunochemical and biological characterization of three capsular polysaccharides from a single Bacteroides fragilis strain.
نویسندگان
چکیده
Although Bacteroides fragilis accounts for only 0.5% of the normal human colonic flora, it is the anaerobic species most frequently isolated from intra-abdominal and other infections with an intestinal source. The capsular polysaccharides of B. fragilis are part of a complex of surface polysaccharides and are the organism's most important virulence factors in the formation of intra-abdominal abscesses. Two capsular polysaccharides from strain NCTC 9343, PS A1 and PS B1, have been characterized structurally. Their most striking feature is a zwitterionic charge motif consisting of both positively and negatively charged substituent groups on each repeating unit. This zwitterionic motif is essential for abscess formation. In this study, we sought to elucidate structural features of the capsular polysaccharide complex of a commonly studied B. fragilis strain, 638R, that is distinct from strain 9343. We sought a more general picture of the species to establish basic structure-activity and structure-biosynthesis relationships among abscess-inducing polysaccharides. Strain 638R was found to have a capsular polysaccharide complex from which three distinct carbohydrates could be isolated by a complex purification procedure. Compositional and immunochemical studies demonstrated a zwitterionic charge motif common to all of the capsular polysaccharides that correlated with their ability to induce experimental intra-abdominal abscesses. Of interest is the range of net charges of the isolated polysaccharides-from positive (PS C2) to balanced (PS A2) to negative (PS 3). Relationships among structural components of the zwitterionic polysaccharides and their molecular biosynthesis loci were identified.
منابع مشابه
Capsular polysaccharides and lipopolysaccharides from two Bacteroides fragilis reference strains: chemical and immunochemical characterization.
Fermentor growth of Bacteroides fragilis under controlled conditions in a complex medium containing 1% glucose and 10% fetal calf serum resulted in high yields of bacteria. After hot phenol-water extraction of the organisms, capsular polysaccharide was isolated from the aqueous phase and purified by Sephacryl S-300 chromatography in a buffer with 3% sodium deoxycholate. Lipopolysaccharide was i...
متن کاملBacteroides fragilis NCTC9343 produces at least three distinct capsular polysaccharides: cloning, characterization, and reassignment of polysaccharide B and C biosynthesis loci.
Bacteroides fragilis produces a capsular polysaccharide complex (CPC) that is directly involved in its ability to induce abscesses. Two distinct capsular polysaccharides, polysaccharide A (PS A) and PS B, have been shown to be synthesized by the prototype strain for the study of abscesses, NCTC9343. Both of these polysaccharides in purified form induce abscesses in animal models. In this study,...
متن کاملInterstrain variation of the polysaccharide B biosynthesis locus of Bacteroides fragilis: characterization of the region from strain 638R.
The sequence and analysis of the capsular polysaccharide biosynthesis locus, PS B2, of Bacteroides fragilis 638R are described, and the sequence is compared with that of the PS B1 biosynthesis locus of B. fragilis NCTC 9343. Two genes of the region, wcgD and wcgC, are shown by complementation to encode a UDP-N-acetylglucosamine 2-epimerase and a UDP-N-acetylmannosamine dehydrogenase, respectively.
متن کاملTrans locus inhibitors limit concomitant polysaccharide synthesis in the human gut symbiont Bacteroides fragilis.
Bacteroides is an abundant genus of bacteria of the human intestinal microbiota. Bacteroides species synthesize a large number of capsular polysaccharides (PS), a biological property not shared with closely related oral species, suggesting importance for intestinal survival. Bacteroides fragilis, for example, synthesizes eight capsular polysaccharides per strain, each of which phase varies via ...
متن کاملRole of glycan synthesis in colonization of the mammalian gut by the bacterial symbiont Bacteroides fragilis.
Bacteroides species are the most abundant Gram-negative bacteria of the human colonic microbiota. These endogenous organisms are unique in that they synthesize an extensive number of phase-variable surface polysaccharides. Pathogenic bacteria phase vary expression of surface molecules for immune evasion, but the importance of the synthesis of multiple phase-variable polysaccharides to these com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 69 4 شماره
صفحات -
تاریخ انتشار 2001